1. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
периметр треуг. образованного средними линиями в 2 раза меньше периметра основного треуг. Значит периметр основного треуг. = 60 см.
4 + 5 + 6 = 15
60 / 15 = 4
Таким образом стороны основного треугольника 16, 20, 24
А образованного средними линиями 8, 10, 12.
2. Треугольники MNK и ANB подобны по 2 сторонам и углу между ними, а так как медианы в месте пересечения делятся в соотношении 2 / 1 т.е. от вершины 2 / 3 и 1 / 3, то и сторона MK = AB / 2 * 3 = 12 / 2 *3 = 18 см
3. По теореме Пифагора KP = корень (PT^2 + TK^2) = корень (49*3 + 49) = 14 см
тангенс угла K = PT / TK = 7* корень (3) / 7 = корень (3)
угол K = арктангенс (корень (3)) = 60 градусов.
4. Так как BH высота получаем 2 прямоугольных треугольника AHB и CHB, зная один из катетов и противолежащий ему угол находим две составляющих AC.
АН = BH / тангенс ( угла A), HC = BH / тангенс ( угла С )
АС=AH+HC = 4 / тангенс (альфа ) + 4 / тангенс (бета)
5. так как по определению трапеции верхнее и нижнее основания параллельны т.е. NK параллельна MP и EK = KP из условия, то NK является средней линией треугольника MEP. Следовательно MP = 2 * NK = 14 см.
Разность оснований трапеции = 14 - 7 = 7 см.
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)
Осевое сечение АВС конуса есть равнобедренный треугольник с углом при вершине С равным 1200. Высота ОС конуса, есть высота, биссектриса и медиана треугольника АВС, тогда угол АСО = АСВ / 2 = 120 / 2 = 600.
В прямоугольном треугольнике АОС, через угол и катет определим длину гипотенузы и второго катета.
Cos60 = ОС / АС.
АС = ОС / Cos60 = 12 / (1 / 2) = 24 см
tg60 = AO / OC.
AO = OC * tg60 = 12 * √3 см.
Определим площадь основания конуса.
Sосн = п * R2 = п * 432 см2.
Определим площадь боковой поверхности конуса.
Sбок = п * R * L = п * АО * АС = п * 12 * √3 * 24 = п * 288 * √3 см2.
Тогда Sпов = Sосн + Sбок = п * 432 + п * 288 * √3 = 144 * (3 + 2 * √3) см2.
ответ: Площадь поверхности конуса равна 144 * (3 + 2 * √3) см2.