)по чертежу думаю все понятно там тэтрайдер. 1 расматриваем аов по теореме пифагора находим ов=10. 2 в треугольнике овс он равнобедренный проводим высоту он она попадает на середину вс. находим он по теореме пифагора он=корень под ним 100-9 =корень из 91. находим площадь треугольника 1/2*св*он=3корня из 91. находим периметр 10+10+6=26 2 находим ов=а корей из 2. находим он = 2а2-а2/4=а корней из 7 делить на 2. площадь а2 корней из 7 делить на 4 а периметр =а(1+2 корня из 2)
Диагональ и высота образуют прямоугольный треугольник с гипотенузой 20 и катетом 16. Другой катет найдем по теореме Пифагора: x^2+16^2=20^2 x^2=400-256 x^2=144 x=12 (см). Получившийся отрезок в равнобедренной трапеции равен полусумме оснований. Нам известна полусумма оснований (m) и высота (h), можем найти и S: S=mh=12*16=192 (см^2) ответ: 192 см^2. Докажем, что в равнобедренной трапеции ABCD с меньшим основанием BC и высотой BH отрезок HD = AD+BC/2. Опустим вторую высоту CF; обозначим основание BC = а, AD = b. Тогда HF=a, а AH=DF=b-a/2. Отрезок DH = FH+DF=a+(b-a/2). Приведем числа к общему знаменателю, получим, что DH=2a+b-a/2=a+b/2. Таким образом, больший отрезок, отсеченный высотой, в равнобедренном трапеции всегда равен половине суммы оснований, что и требовалось доказать.