6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
х-одна часть сторон треугольника
5х - первая сторона треугольника
3х - вторая сторона треугольника
7х -третья сторона треугольника
а)
P=a+b+c
5х+3х+7х=45
15х=45
х=3
5*3=15 - первая сторона треугольника
3*3=9 - вторая сторона треугольника
7*3=21 -третья сторона треугольника
ответ: 15;9;21
б) Меньшая сторона в треугольнике это 3х - вторая сторона треугольника
3х=5
х=5/3
5*5/3=25/3 - первая сторона треугольника
7*5/3=35/3 -третья сторона треугольника
ответ: 25/3 ;5 ;35/3
в) Большая сторона в треугольнике это 7х - третья сторона треугольника
7х=7
х=1
5*1=5 - первая сторона треугольника
3*1=3 - вторая сторона треугольника
ответ: 5;3;1