AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
1. Так как АВ=ВС, то треугольник равнобедренный
Сумма углов треугольника равна 180°, тогда <В= 180-<А+<С= 180-(50+50) = 80°
У равнобедренного треугольника высота выступает медианой и биссектрисой (в данном случае биссектрисой) тогда <АВМ=<СВМ=80:2=40°
2. Так как АВ=ВС то треугольник равнобедренный.
Так как третья сторона равна сумме двух остальных, то АС=АВ+ВС= 10 см
3. <С=180-125=55°, как смежные
Так как АВ=ВС, тогда треугольник равнобедренный
<А=<С=55°
Сумма углов треугольника равна 180°, <В=180-(55+55)=70°
4. <В= 180-120=60°, как смежные
<С=180-110=70°,как смежные
Сумма углов треугольника равна 180°, тогда <В=180-(70+60)= 50°
5. <С=180-85=95°, Как смежные
<А=<1=40°, как смежные
Сумма углов треугольника равна 180°, тогда <В=180-(95+40)=45°
Место открытие новой школы в Самарканде а в каком году не помню
Объяснение:
Он открыл эту школу в самарканде