Точка середины стороны AB возьмем за N, а точку середины стороны AC возьмем за M. Тогда MN средняя линия треугольника. Если опустить высоту АН, то она будет перпендикуляра BC и MN. Пересечение высоты со средней линией прими за К. Тогда АК = КН поскольку MN средняя линия. На продолжении MN опустим перпендикуляры из точек C и B, а точки пересечения обозначим соответственно за Z и X. Тогда ZXCB прямоугольник у которого противолежащие стороны равны.Поскольку КН перпендикулярно CB, то CZ=KH=BX. Тогда вершины равно удалены от прямой.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)