Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
Трапеция АВCD. Из В и С опускаем перпендикуляры к большей стороне (высота трапеции) Получаем два прямоугольных треугольника АВN и CDM. Пусть катет АN = x, а катет MD = y.
Из прямоугольных треугольников по Пифагору имеем: 14² = h² + y²; 15² = h² + x²; x + y = 13 (21-8). y = 13 - x. Из 14² = h² + y² имеем h² = 14² - y². Тогда:
15² = 14²-y² + x²; 15² = 14²- (13 - x)² +x²; 15² = 14² - (13² -26x + x²) +x²; 15² = 14² - 13²+26x- x² +x²; 15²=14² - 169 + 26x; 26x = 225 -196 +169; 26x = 198; x = 99/13; h² = 15² - (99/13)² ;
h² = (15²*13²-99²)/13² = (195²-99²)/13² = [(195+99)*(195-99)]/13² = (294*96)/13² = 28224/13² = 168²/13². Отсюда h = 168/13 = 12и12/13;
Итак, вроде бы высота ≈ 12,92 ;