у Равнобедренного треугольника АВС, отрезок ВД-медиана, проведенная к основанию. Найдите периметр треугольника ВДС так, что перимтр треугольника АВС=18 см. Вд=5 см
1. Треугольник РОС равен треугольнику АОК по двум углам и стороне между ними (<POC=<AOK - вертикальные, <PCO=<OAK - внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС, а АО=ОС - диагональ АС в точке О делится пополам). Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак). Что и требовалось доказать. 2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20. Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20. ответ: Sapkd=20. 3. По Пифагору СК=√(64+25)=√89. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда PK=√41.
Равновеликие фигуры — это такие фигуры, площади которых между собой равны.
Докажем, что S(ABCD) = S(EBCF).Доказательство :
Так как по условию ABCD — прямоугольник, то AB⊥ED.
Рассмотрим параллелограмм EBCF.
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно, S(EBCF) = АВ×EF.
EF = BC (по свойству параллелограмма).
Тогда также верно равенство S(EBCF) = АВ×ВС.
Рассмотрим прямоугольник ABCD.
Площадь прямоугольника равна произведению его смежных сторон.Следовательно, S(ABCD) = AB×BC.
Итак, так как правые части выражений равны, то мы можем приравнять из левые части. То есть мы получаем, что S(ABCD) = S(EBCF).
Что требовалось доказать.