М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
den53499
den53499
16.03.2022 17:12 •  Геометрия

18. треугольникAВС подібний треугольнику А1В1C1. Знайти периметр трикутника A1B1C1, якщо AB=6, B1C1=16. AC=9, BC=8.

👇
Ответ:
yuliyakoshka0
yuliyakoshka0
16.03.2022

А1В1 = 12

А1С1 = 12

96:8=16

16*6=96

4,8(18 оценок)
Открыть все ответы
Ответ:
okolota05
okolota05
16.03.2022
Параллельно прямой АК проведём прямую СМ к стороне АД. СМ пересекает ВД в точке Е.
Треугольники АВК и CДМ равны т.к. АВ=СД, ВК=ДМ и ∠В=∠Д. В них ∠АВР=∠СДЕ, значит ВР=ДЕ. 
Пусть одна часть в заданном отношении равна х, тогда ВР=ДЕ=2х, РД=3х, РЕ=РД-ДЕ=3х-2х=х.
В тр-ке ВСЕ РК║СЕ, ВР:РЕ=2:1, значит ВК:СК=2:1 - это ответ 1.

Параллельно сторонам АД и ВС через точку Р проведём отрезок НО.
Параллельно сторонам АВ и СД к прямой НО проведём отрезок КТ.
НВКТ - параллелограмм. Его площадь равна двум площадям треугольника BPК т.к. у них одинаковая высота к стороне ВК.
S(НBКТ)=2S(BРК)=2.
Площадь параллелограмма ТКСО равна половине НВКТ т.к. КС=ВК/2.
S(TKСО)=2/2=1.
АНОД - параллелограмм. Соответственно его площадь равна удвоенной площади тр-ка АРД.
Тр-ки BPК и АРД подобны по трём углам, значит их коэффициент подобия k=ВР:РД=2:3, а коэффициент подобия площадей k²=4/9.
S(АРД)=S(BРК)/k²=9/4.
S(АНОД)=2·9/4=4.5,
Площадь исходного параллелограмма АВСД равна сумме площадей найденных параллелограммов НВКТ, ТКСО и АНОД.
S(АВСД)=2+1+4.5=7.5 - это ответ 2.
Луч из вершины a параллелограмма abcd пересекает диагональ bd в точке p,а сторону bc - в точке k. от
4,5(50 оценок)
Ответ:
kirill1s
kirill1s
16.03.2022
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
4,6(14 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ