1. Используем теорему о пропорциональных отрезках (если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне).
2. Рассмотрим треугольник АВС. Отрезок, соединяющий середины его сторон P и M, это средняя линия данного треугольника, она равна половине его основания, т.е. 1/2 диагонали АС. Аналогично для треугольника BCD отрезок MN это средняя линия, и он также равен полочине основания, т.е. диагонали BD.
Рассуждая аналогично для треугольников ACD и ABD находим, периметр MNPQ = 1/2 * АС + 1/2 АС + 1/2 BD + 1/2 BD = AC + BD = 18
У четырехугольника MNPQ противоположные стороны равны и параллельны (По свойству средних линий рассмотренных выше треугольников), значит он является параллелограммом по определению.
3. Рассмотрим ΔABC. ∠BCA =∠ CAD как внутренние накрест лежащие при параллельных прямых, ∠BAC = ∠CAD по условию задачи. Вывод: ∠BAC = ∠BCA, а это углы при основании AC ΔABC. ⇒ Данный треугольник равнобедренный. KM является его средней линией. ⇒ AB = BC = 14.
KL = 7 + 4 + 7 = 18. Поскольку это по условиям задачи среджняя линия трапеции, она равна полусумме оснований трапеции. Находим большее основание:
1)ответ: длина медианы 13 см. Нужно составить уравнения!
Обозначим стороны равнобедр. треугольника через Х, основание - через У, медиану - через Р. Имеем уравнения:
1. 2Х + У = 40 (периметр треуг. АВС) . 2. Х + 0,5У + Р = 33 (периметр треуг. АВМ) .
Умножив второе на 2, получим третье уравнение: 3. 2Х + У +2Р = 66.
2)Если длины боковых сторон равны х, а длина третьей стороны у, то возможны варианты:
а) 2х = 26 => x = 13 2х+у = 36 => y = 10
б) х+у = 26 => y = 26-x 2х+у = 36 => 2x + 26 - x = 36 => x = 10 => y = 16
Т. е. либо боковые стороны имеют длину 13, а третья - 10, либо боковые по 10, а третья - 16.
Р К, 26/2 = 13 : ) Вычтя из третьего - первое уравнение, найдем: 2Р = 26, откуда Р= 13.
Итак, длина медианы Р=АМ равна 13 см.
Пояснения: В первом уравнении стоит 2Х, т. к. треугольник равнобедренный, т. е. 2 стороны равны! Во втором уравнении стоит 0,5У, т. к. медиана проводится к середине, в данном случае - к средине основания.
A + B = 180° – C, cos (A + B) = cos (180 – C) = –cos C.
Данное равенство переписывается так:
cos A + cos B + cos C = ³⁄₂. (1)
Докажем, что из (1) следует A = B = C = 60°.
Для произвольного треугольника
cos A + cos B = 2 cos ½(A + B) cos ½(A – B), (2) cos ½(A + B) = cos ½(180° – C) = cos (90° – ½C) = sin ½C. (3)
Равенство (3) показывает, что cos ½(A + B) — положительная величина, поэтому из (2) следует, что
cos A + cos B ≤ 2 cos ½(A + B) = 2 sin ½C.
Следовательно,
cos A + cos B + cos C ≤ 2 sin ½C + cos C = 2 sin ½C + 1 – 2 sin² ½C = = –2(sin ½C – ½)² + ³⁄₂.
Значит, для любого треугольника
cos A + cos B + cos C ≤ ³⁄₂,
причём равенство достигается при sin ½C = ½, cos ½(A – B) = 1, т. е. при A = B = C = 60°.
Итак, треугольник ABC правильный. Сторона равна 18/3 = 6. Биссектрисы (они же высоты и медианы) все три равны 3√3. Площадь (правильного) треугольника из них равна
ответ: 1. 10
2. 18
3. Основания 14 и 22. Периметр 64.
Объяснение:
1. Используем теорему о пропорциональных отрезках (если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне).
Составляем пропорцию: 3/6 = 5 /х,откуда х = 5*6 / 3 = 10
2. Рассмотрим треугольник АВС. Отрезок, соединяющий середины его сторон P и M, это средняя линия данного треугольника, она равна половине его основания, т.е. 1/2 диагонали АС. Аналогично для треугольника BCD отрезок MN это средняя линия, и он также равен полочине основания, т.е. диагонали BD.
Рассуждая аналогично для треугольников ACD и ABD находим, периметр MNPQ = 1/2 * АС + 1/2 АС + 1/2 BD + 1/2 BD = AC + BD = 18
У четырехугольника MNPQ противоположные стороны равны и параллельны (По свойству средних линий рассмотренных выше треугольников), значит он является параллелограммом по определению.
3. Рассмотрим ΔABC. ∠BCA =∠ CAD как внутренние накрест лежащие при параллельных прямых, ∠BAC = ∠CAD по условию задачи. Вывод: ∠BAC = ∠BCA, а это углы при основании AC ΔABC. ⇒ Данный треугольник равнобедренный. KM является его средней линией. ⇒ AB = BC = 14.
KL = 7 + 4 + 7 = 18. Поскольку это по условиям задачи среджняя линия трапеции, она равна полусумме оснований трапеции. Находим большее основание:
1/2 AD + 1/2BC = 18
1/2AD + 7 = 18
AD = 22
Периметр трапеции равен 22 + 14 + 14 + 14 = 64