а)в основании пирамиды прямоугольник. по теореме пифагора ас2=ad2+dc2=122+52=144+25=169ac=13.δ asc – равнобедренныйsa–ac=13перпендикуляр ah – высота равнобедренного треугольника, которая одновременно является и медианой.значит,sh=hcб)рассмотрим треугольник равнобедренный (sb=sc=13)треугольник sbc.высота sp равнобедренного треугольника делит сторону вс пополам.вр=рс=6в а) доказано, что sh=hc,значит hp – средняя линия δ sbc и hp|| sbпроводим pf ⊥ sb и hk || pf ⇒ hk ⊥ sb.hk=pfpf– высота прямоугольного треугольника sbp.sb=13bp=6sp=√sb2–bp2=√169–36=√133так как sδ sbp=(1/2)sb·pf и sδ sbp=(1/2)·bp·sp, тоpf· sb=bp·sb ⇒ pf=6·√133/13hk=pf=6·√133/13о т в е т.6·√133/13
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².