Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Т.к. острый угол ромба 60 гр. то диагональ BD отсекает равыносторонний треугольник АВD все его стороны по а Т.к. параллельна ВА , то точка С находится на расстоянииа\2 от С до альфа. Двугранный угол АВ построим его линейный угол. Из D проведём перпендикуляр к АВ это DK Пусть проекция D на альфа будет точка Р Р это основание перпендикуляра. Соединим основание перпендикуляра и основание наклонной получим отрезок КР это проекция на альфа . По теореме о трёх перпендикулярах РК перпендикулярно альфа Тогда угол DKP это линейный угол двугранного угла ВА.sinDKP= DP\DK= а\2: а =1\2 значит угол 30 гр.
рассмотрим треугольник abc и mnb. в них:
< cab=< nmb, < acb=< mnb (соответственные углы при параллельных прямых), значит эти треугольники подобны. тогда получаем:
mn/ac=mb/ab
9/12=x/18
x=18*0,75=13,5 см.
ответ: bm=13,5 см.