Число 10000 можно не учитывать, поэтому все числа там будут трёхзначные или четырёхзначные. С первыми всё сразу ясно: их с требуемым свойством ровно 9. Четырёхзначные числа, которые нас интересуют, имеют одну из четырёх форм: xxxa, xxax, xaxx, axxx, где x x не равно a a . Чисел вида xxxa имеется 92=81 9 2 = 81 по правилу произведения: цифру x выбираем любой, кроме нуля цифра a -- любая из десяти, кроме Легко видеть, что 81 получится и в остальных случаях по тому же принципу. Итого 9+4⋅81=333 9 + 4 ⋅ 81 = 333 .
Сначала всё обозначим. Расстояние = х. Первоначальная скорость 50 км/час. Увеличенная скорость 60 км/час. Тогда время, затраченное на первую половину пути, будет х/2 : 50, а время второй половины пути х/2 : 60. Разница между ними 12 минут, или 1/5 часа. Получаем уравнение x/2 : 50 - x/2 : 60 = 1/5. Находим общий знаменатель, приводим подобные, получаем простое уравнение 1,2х - х = 24, отсюда х = 120 (км). Это расстояние между станциями. Проверка: 60 (половина пути) : 50 = 1 и 1/5 часа. Вторая половина расстояния 60 : 60 = 1 час. Разница 1/5 часа, или 12 минут, как в условии.
2) ab/(ab-ab^2)=1/(1-b)
3) (3m^2-6m)/(m^2-4)=3m*(m-2)/(m^2-4)=3m/(m+2)=
4) (4-n^2)/(8n-4n^2)=(2+n)/4n
5) (b^2-b)/(ab-b)=(b-1)/(a-1)
6) (mn+n^2)/(mn+n)=(m+n)/(m+1)
7) (p^2-2p)/(p^2-4p+4)=p/(p-2)
8) (q^2+2q)/(q^2+4q+4)=q/(q+2)