М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ludarudenko98
ludarudenko98
04.05.2021 08:56 •  Геометрия

Найдите пириметр и площадь ромба ,если его сторона равна 13см ,а одно из диогоналей равна 24 см

👇
Ответ:
AyanaHaverfords
AyanaHaverfords
04.05.2021
Периметр : 13* 4 = 52
Площадь : найдем вторую диагональ
В прямоугольном треугольнике гипотенуза 13,один катет равен половине данной диагонали , то есть 12 .. По т Пифагора найдем половину искомой диагонали .. Половина = 169-144=25(корень ) = 5
Значит вторая диагональ 5*2=10
Площадь ромба половина произведения диагоналей .. Поощадь = (13*10)/2=130/2=65
4,7(61 оценок)
Открыть все ответы
Ответ:
snagaytsev1
snagaytsev1
04.05.2021

Дано:

Окружность (О; r)

∠OBA = 30°

CA — касательная

Найти:

∠BAC — ?

1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).

У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.

2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.

3) ∠BAC = ∠OAC - ∠OAB.

∠BAC = 90° - 30° = 60°.

ОТВЕТ: 60°

Быстрое решение (пояснения писать обязательно нужно):

1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.

По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:

2) ∠BAC = 90° - 30° = 60°

ОТВЕТ: 60°

4,8(62 оценок)
Ответ:
Alik2017
Alik2017
04.05.2021

Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).

прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).

За властивістю прямокутного трикутника

h^2= AH•BH

(це виводиться із подібності прямокутних трикутників ABC і CBH).

Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.

У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:

AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,

за теоремою Вієта, отримаємо

x1=1 і x2=-5<0, звідси AH=1 см.

AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.

Відповідь: 5.

4,4(16 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ