Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Равенство треугольников:
1. по общей стороне AD и двум равным углам: B = C, CAD = DAB
2. по общей стороне (высоте исходного треугольника) и двум углам при высоте и A = С.
3. по общей стороне AD и равным сторонам AC и BD и прямому углу.
4. используем теорему синусов: "Стороны треугольника пропорциональны синусам противолежащих углов".
4/sin30 = AB/sin90 => AB = 8
5. Находим A = 180 - 90 - 60 =30
используем теорему синусов:
10/sin90 = BC/sin 30 => BC = 5
6. Треугольник равнобедренный, т.к углы при основании 45 =>
BC = AC = 6
Объяснение:
решение в файле скачай