Равнобедренный треугольник условно назовём ABC с основанием AC. Если периметр треугольника ABC равен 24 см, то значит, что каждая его сторона будет равна по P = 24 : 3 = 8 см (т.к. у равнобедренного треугольника все стороны равны). Равнобедренный треугольник начертим от стороны BC. Получится равнобедренный треугольник BCD с основанием BC. Мы знаем, его его периметр равен 36 см. У треугольника BCD равны стороны BD и DC, а сторону BC мы знаем. Значит, сначала находим сумму длин равных сторон 36 - 8 = 28 см. Значит, BD = DC = 28 : 2 = 14 см ответ: BC = 8 см, BD = 14 см, DC = 14 см
Поскольку ∆ прямоугольный, то второй, прилежащий к заданному катету угол, 90°. Пусть, например, задан катет 6см и прилежащий угол 40°. Проводим горизонтальную линию длиной 6 см, обозначаем А и В. Это катет. Прикладываем транспортир, совмещая (одновременно) его основание с линией катета, а его риску (крестик) нулевой точки - с точкой А. По шкале откладываем угол 40° от катета АВ, ставим точку (временную). Через неё и т.А проводим временную линию -вторую сторону заданного угла. В точке В катета по линейке строим перпендикуляр под углом 90° до пересечения с временной линией (если лист без клеток, то опять приладыааем транспортир). Обозначаем, например, т.С. Обводим посильнее гипотенузу АС и второй катет ВС. Можно проверить транспортиром угол АСВ, он должен получиться 180-90-40=50°, зависит от аккуратности построения.
ответ: BC = 8 см, BD = 14 см, DC = 14 см