М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nbolshakova1
nbolshakova1
20.02.2023 16:27 •  Геометрия

Дана геометрическая прогрессия 6; -18….
найдите пятый член данной прогрессии

👇
Открыть все ответы
Ответ:
alekss84
alekss84
20.02.2023
ΔАВС- равнобедренный.Пусть  АВ=ВС =а. ВЕ⊥ АС=10 см, DC⊥АВ=12 см. Найти R окр.,описанной около Δ СDB.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC   ⇒  S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB                S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC                 S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC  (2)
Следовательно, DB / BC = 6·DB / 5·AC      ⇒ 5AC=6BC  (3)
Из  Δ ВЕС  найдём  ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100     АС=2х=2·√а²-100
Используем (3) равенство :  5 АС=6 ВС и  АС=2х   ⇒
5·2√а²-100 = 6а  ⇒  100·(а²-100)=36 а²  ⇒  64 а²=10000  
а²=10000 / 64   ⇒  а=100 / 8    R = 1/2 a   =  50/8 = 25 / 4
4,7(70 оценок)
Ответ:
yohoho365
yohoho365
20.02.2023

Площадь S‍1 ‍ боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.

‍ Значит, S‍1 = 3al = 18

‍ПустьS --‍ площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60‍∘.

‍ Поэтому

S2= 2√3

Следовательно, площадь полной поверхности призмы равна



 = 18 + 4√3
4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ