АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
Параллелограмм АВСД, ВС=АД=15, ВМ=9, ВМ и СМ -биссектрисы, уголС=2х, уголВ=180-2х, уголМВС=уголМВА=(180-2х)/2=90-х, уголМСВ=уголМСД=2х/2=х, уголАМВ=уголМВС=90-х - как внутренние разносторонние=уголМВА, треугольник АВМ равнобедренный, АВ=АМ, уголДМС=уголМСВ=х - как внутренние разносторонние=уголМСД, треугольник МСД равнобедренный, МД=ДС, но ДС=АВ, значить АВ=АМ=МД=СД, точка М -середина АД, АМ=МД=15/2=7,5, уголВМС=180-уголАМВ-уголСМД=180-(90-х)-х=90, треугольник ВМС прямоугольный, треугшольник АВМ равнобедренный, АВ=АМ=7,5, ВМ=7,5, проводим высоту АН на ВМ, ВМ=медиане=биссектрисе, ВН=НМ=9/2=4,5, треугольник АВН прямоугольный, АН=корень(АВ в квадрате-ВН в квадрате)=корень(56,25-20,25)=6, площадьАВМ=1/2ВМ*АН=1/2*9*6=27, проводим высоту ВК на АМ, ВК=2*площадьАВМ/АМ=2*27/7,5=7,2, площадь параллелограмма=АД*ВК=15*7,2=108
КО=13мм
АО=26мм
Объяснение:
cos<A=AK/AO
√3/2=13√3/AO
AO=13√3*2/√3=26мм
Теорема Пифагора
КО=√(АО²-АК²)=√(26²-(13√3)²)=
=√(676-507)=√169=13мм
Zmeura1204