Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. чтобы доказать эту теорему, построим два прямоугольных гольника abc и а'в'с', у которых углы а и а' равны, гипотенузы ав и а'в' также равны, а углы с и с' — прямые наложим треугольник а'в'с' на треугольник abc так, чтобы вершина а' совпала с вершиной а, гипотенуза а'в' — с равной гипотенузой ав. тогда вследствие равенства углов a и а' катет а'с' пойдёт по катету ас; катет в'с' совместится с катетом вс: оба они перпендикуляры, проведённые к одной прямой ас из одной точки в (§ 26,следствие 3). значит, вершины с и с' совместятся. треугольник abc совместился с треугольником а'в'с'. следовательно, /\ авс = /\ а'в'с'.эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
Сначала по теореме Пифагора найдем гипотенузу Так, теперь рассмотрим треугольник ABC (который основной) и ABH например( если что, то AH это высота. нарисуй треуг. что бы потом не запутаться) прямоугольный треуг. с проведенный к гипотенузе высотой делится на 3 подобных треугольника.( там по 2 углам получается) поэтому наш ABC подобен треуг. ABH. Еще раз повторю, нарисуй трег. чтобы видеть, что чему подобно. Найдем коэффициент подобия - то и есть коэффициент подобия этих треуг. AB тут выступает в роли гипотенузы треугольник ABH, надеюсь это понятно. теперь остается найти высоту как-то так
решение на фотографии