М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vika14Veronika
Vika14Veronika
05.07.2020 11:56 •  Геометрия

1) На сторонах осібD трикутника ODC позначено відповідно точки А і В такі, що OA = 6 см, оВ= 9 см, AC = 15 см,
BD=5 см і AB=4 см. Знайдіть довжину сторони CD.
2) Знайдіть довжини відрізків АВ і СD, які перетинаються
в точці 0, якщо АО -15 см, оD =5 см, СО:0B=1:3,
AB+CD = 24 см.​

👇
Открыть все ответы
Ответ:
zejbelanka
zejbelanka
05.07.2020

С линейки проводим прямую и на ней с циркуля отложим отрезок АВ, равный отрезку МК. Для этого произвольно на прямой ставим точку А, с циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.

Далее строим угол ВАF равный углу 1. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 1  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 1 обозначаем N и Р.

С циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения окружности с окружностью радиуса МК с центром в точке А обозначаем F.

Далее, проводим луч АF с линейки.

Далее, строим угол АВD равный углу 2. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 2  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 2 обозначаем О и Е.

С циркуля строим окружность радиуса МК с центром в точке В (всю окружность строить необязательно, смотри, выделенное красным цветом), затем измеряем длину отрезка ОЕ и строим окружность радиуса ОЕ с центром в точке А (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данных окружностей обозначаем D.

Далее, проводим луч ВD с линейки.

Точку пересечения лучей АF и ВD обозначаем С. Получаем треугольник АВС, в котором по построению АВ = МК, ВАС =1, АВС =2, следовательно, треугольник АВС - искомый.

Данная задача не всегда имеет решение. Так как по теореме о сумме углов треугольника: сумма углов всякого треугольника равна 1800. Значит, сумма двух данных углов должна быть меньше 1800. Если же сумма двух данных углов будет больше 1800, то нельзя построить треугольник, углы которого равнялись бы данным углам.

Объяснение:

4,8(100 оценок)
Ответ:
Михаил684
Михаил684
05.07.2020
Основание параллелепипеда - квадрат, значит диагонали основания равны между собой  и равны Do=а√2.
Заметим, что малая диагональ сечения равна диагонали основания - как  противоположные стороны прямоугольника, то есть dc=а√2.
Значит сторона сечения тоже равна а√2 (так как острый угол ромба равен 60°, а это значит что треугольник, образованный сторонами ромба и его малой диагональю,  равносторонний).
Итак, b=а√2.
Найдем большую диагональ сечения (ромба). Половина этой диагонали находится по Пифагору:
Dc/2=√[b²-(d/2)²]=√[2a²-(2a²/4)]=√[2a²-(a²/2)]=√[(3a²/2)]=a√(3/2)=a√6/2.
Тогда Dс=a√6.
Найдем значение отрезка СС2 - расстояние, на котором плоскость сечения пересекает  ребро параллелепипеда СС1.
По Пифагору СС2=√(Dс²-Do²)=√(6a²-2a²)=2a.
Угол между двумя пересекающимися плоскостями - это двугранный угол, образованный  полуплоскостями и измеряется величиной его линейного угла, получаемого при  пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть  перпендикулярной к обеим плоскостям).
Тогда синус угла наклона плоскости сечения к плоскости основания (или угол между  ними) равен отношению СС2 к большой диагонали сечения Dс, то есть угол наклона  плоскости сечения к плоскости основания равен α=arcSin(2a/а√6) или α=arcSin (√6/3).
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой  прямой и ее проекцией на данную плоскость.
Тогда угол наклона бокового ребра АА1 параллепипеда к плоскости сечения равен 90°- α. Но Sin(90-α)=Сosα, а Cosα=√(1-6/9)=√3/3.
В силу параллельности всех боковых ребер параллелепипеда, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона бокового ребра параллелепипеда к плоскости сечения равен  arcCos(√3/3).
Расстояние от точки О до плоскости сечения равно ОН= АО*Sinα=(а√2/2)*(√6/3)=а√3/3.
Опустим перпендикуляр DD2 из точки D на плоскость сечения. Тогда DD2=OH=а√3/3.  АD2 - это проекция ребра АD на плоскость сечения.
Значит <D2AD - это угол между ребром АD и плоскостью сечения. 
Sin<(D2AD)=(DD2/AD)=(а√3/3)/a= √3/3.
В силу симметричности ребер АD и АВ относительно диагонали АС основания и в силу попарной параллельности ребер обоих оснований, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона ребер основания параллелепипеда к плоскости сечения равен  arcSin(√3/3).

ответ: угол наклона боковых ребер параллелепипеда к плоскости сечения равен
arcCos(√3/3).
угол наклона ребер основания параллелепипеда к плоскости сечения равен
arcSin(√3/3).

Плоскость пересекает прямоугольный параллелепипед так что,фигура получившаяся в сечении является ром
4,5(35 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ