С = 4*h x+y = с h² = xy высота к гипотенузе=среднее геометрическое отрезков, на которые она разбивает гипотенузу))) тангенсы острых углов будут равны: h/x и h/y h²/x = y h/x = y/h если второе равенство разделить на (h), получим: (x/h) + (y/h) = c/h = 4 замена: x/h = t t + (1/t) = 4 t² - 4t + 1 = 0 D = 16-4 = 12 t1 = (4-2√3)/2 = 2-√3 t2 = 2+√3 тангенс одного острого угла = 2+-√3 тангенс другого острого угла = 1/(2+-√3) = 2-+√3 ответ: тангенс одного острого угла = 2+√3 тангенс другого острого угла = 2-√3 это углы в 75° и 15°
Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210
x+y = с
h² = xy
высота к гипотенузе=среднее геометрическое отрезков, на которые она разбивает гипотенузу)))
тангенсы острых углов будут равны: h/x и h/y
h²/x = y
h/x = y/h
если второе равенство разделить на (h), получим:
(x/h) + (y/h) = c/h = 4
замена: x/h = t
t + (1/t) = 4
t² - 4t + 1 = 0
D = 16-4 = 12
t1 = (4-2√3)/2 = 2-√3
t2 = 2+√3
тангенс одного острого угла = 2+-√3
тангенс другого острого угла = 1/(2+-√3) = 2-+√3
ответ: тангенс одного острого угла = 2+√3
тангенс другого острого угла = 2-√3
это углы в 75° и 15°