По условию АС=9 см; ВD=12 см; m=7,5 см; m=(AD+BC)/2; AD+BC=7,5*2=15 см; Проведем из вершины C на AD высоту CK. Проведем через вершину С прямую, параллельную диагонали ВD. Пусть F - точка пересечения этой прямой с продолжением АD. ВСFD - параллелограмм, так как BC||DF и BD||CF. СF = ВD = 12 см; DF=BC; Площадь трапеции АВСD равна S(ABCD)=m*CK; Площадь треугольника АСF равна S(ACF)=АF*CK/2=(AD+DF)*CK/2=m*CK; Значит, S(ABCD)=S(ACF); В треугольникеACF: AF=AD+DF=AD+BC=15 см; АС=9 см; СF=12 см; Зная три стороны площадь треугольника можно найти по формуле Герона. р=(15+9+12):2=18 - полупериметр; S(ACF)=√18*(18-15)*(18-12)*(18-9)= √18*3*6*9=√9*6*6*9=9*6=54 см^2; Но можно поступить проще. Можно заметить, что треугольник со сторонами 9; 12 и 15 см - это прямоугольный треугольник (15^2=9^2+12^2). Поэтому площадь треугольника АСF равна половине произведения катетов. S(ACF)=AC*CF/2=9*12/2=54 см^2; ответ: 54
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.