Иван I Данилович (Калита) (?-31 МР 1340) - князь московский с 1325, Великий князь владимирский с 1328. Вступил на престол после гибели в Орде Юрия Даниловича и передачи ярлыка в Тверь (1325 20 НЯ) . Сыграл большую роль в укреплении влияния и расширении территории Московского княжества. Покупал у бедных князей деревни, сёла и даже города (Белозёрск, Галич, Углич) . В 1332 начал борьбу с Новгородом за "дани новгородские", отвоевал Торжок. Первым из русских князей называл себя "великим князем всея Руси". Его политику поддерживал митрополит Пётр, подготовивший перенос митрополичьей кафедры из Владимира в Москву (Москва становится религиозным центром Руси) . После разгрома москвичами Твери в наказание за убийство тверичами ханских баскаков, Иван получил ярлык на великое княжение (Москва становится политическим центром Руси) . Собирая дань для Орды, он удерживал часть этой дани для собственной казны. Обеспечил длительный мир для Московского княжества. Разделил свои земли м. сыновьями Симеоном, Иваном, Андреем, отдал Москву им в общее пользование. Погребён в Даниловском монастыре.
√5,89
Объяснение:
Вот рисунок.
Отрезок AM = m (медиана) дает 4 прямоугольных треугольника.
Так как M - середина BC, то BM = CM = d.
По теореме Пифагора для этих треугольников:
{ m^2 = (5-b)^2 + 2^2 = 25 - 10b + b^2 + 4
{ d^2 = 2^2 + b^2 = 4 + b^2
{ m^2 = (4-c)^2 + x^2 = 16 - 8c + c^2 + x^2
{ d^2 = x^2 + c^2
Подставляем 2 уравнение в 1 уравнение, а 4 уравнение в 3 уравнение:
{ m^2 = 25 - 10b + d^2
{ m^2 = 16 - 8c + d^2
Приравниваем правые части:
25 - 10b + d^2 = 16 - 8c + d^2
Приводим подобные:
10b - 8c = 9
b = (8c + 9)/10
Так как мы не знаем угол А, то и не можем вычислить b и с.
Можем только найти их соотношение друг к другу.
Например, при c = 1 будет b = (8 + 9)/10 = 1,7
Тогда приравняем правые части во 2 и 4 уравнениях:
4 + b^2 = x^2 + c^2
И подставим найденные значения:
4 + 1,7^2 = x^2 + 1^2
x^2 = 4 + 2,89 - 1 = 5,89
x = √5,89 ≈ 2,427