М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
progamesnester
progamesnester
06.06.2023 06:17 •  Геометрия

Втреугольнике авс: угол с = 90 градусов угол в = 30, св = 5 см ав = 12 см. найти площадь треугольника

👇
Ответ:
MrKreol
MrKreol
06.06.2023

т.к.  угол В = 30 градусов,то АС=1/2*АВ=1/2*12=6см
Площадь треугольника=1/2*ВС*АС=1/2*5*6=15 кв.см
ответ:15 кв.см 

4,4(80 оценок)
Ответ:
veraeliseeva718
veraeliseeva718
06.06.2023

Площадь прямоугольного треугольника равна половине произведения катетов. Один катет 5 , другой можем найти. По правилу, катет, лежащий против угла 30 градусов равен половине гепотенузы. Т. е. АС=6. Теперь можем найти площадь: (5*6):2=15

4,8(37 оценок)
Открыть все ответы
Ответ:
relax217
relax217
06.06.2023

Доказательство. Рассмотрим треугольник ABC с высотами AA1, BB1 и CC1 и докажем, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Проведем через точки A, B, C прямые, соответственно перпендикулярные к прямым AA1, BB1, CC1 и, следовательно, соответственно параллельные прямым BC, CA, AB (рис. 79). Эти прямые, пересекаясь, образуют треугольник A2B2C2.

Так как C2A || BC и C2B || AC, то четырехугольник BC2AC — параллелограмм, поэтому C2A = BC. По аналогичной причине AB2 = BC. Из этих двух равенств следует, что C2A = AB2, т. е. точка A — середина отрезка C2B2. Аналогично можно доказать, что точки B и C — середины отрезков A2C2 и A2B2.

Таким образом, прямые AA1, BB1, CC1 являются серединными перпендикулярами к сторонам треугольника A2B2C2, поэтому они пересекаются в одной точке. Теорема доказана.

Точку пересечения высот треугольника (или их продолжений) для краткости называют ортоцентром треугольника.

Итак, с каждым треугольником связаны четыре точки: точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам, точка пересечения медиан и ортоцентр. Эти четыре точки называются замечательными точками треугольника.


Докожите что высоты треугольника пересекаются в одной точке
4,4(3 оценок)
Ответ:
антон776
антон776
06.06.2023

Доказательство. Рассмотрим треугольник ABC с высотами AA1, BB1 и CC1 и докажем, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Проведем через точки A, B, C прямые, соответственно перпендикулярные к прямым AA1, BB1, CC1 и, следовательно, соответственно параллельные прямым BC, CA, AB (рис. 79). Эти прямые, пересекаясь, образуют треугольник A2B2C2.

Так как C2A || BC и C2B || AC, то четырехугольник BC2AC — параллелограмм, поэтому C2A = BC. По аналогичной причине AB2 = BC. Из этих двух равенств следует, что C2A = AB2, т. е. точка A — середина отрезка C2B2. Аналогично можно доказать, что точки B и C — середины отрезков A2C2 и A2B2.

Таким образом, прямые AA1, BB1, CC1 являются серединными перпендикулярами к сторонам треугольника A2B2C2, поэтому они пересекаются в одной точке. Теорема доказана.

Точку пересечения высот треугольника (или их продолжений) для краткости называют ортоцентром треугольника.

Итак, с каждым треугольником связаны четыре точки: точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам, точка пересечения медиан и ортоцентр. Эти четыре точки называются замечательными точками треугольника.


Докожите что высоты треугольника пересекаются в одной точке
4,7(84 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ