Вписанный угол равен половине дуги, на которую он опирается. Тогда величина дуги АС, на которую опирается вписанный угол CBA, два раз больше чем величина вписанного угла ∠CBA. Поэтому
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
Дуга АС = 52°
Известно, что AB-диаметр окружности и угол CAB=64°.
Так как AB диаметр окружности и вписанный угол ACB опирается на диаметр AB, то ∠ACB=90°. Сумма внутренних углов треугольника 180°, то есть
∠ACB + ∠CAB + ∠CBA = 180°.
Отсюда находим
∠CBA = 180° - ∠ACB - ∠CAB = 180° - 90° - 64° = 26°.
Вписанный угол равен половине дуги, на которую он опирается. Тогда величина дуги АС, на которую опирается вписанный угол CBA, два раз больше чем величина вписанного угла ∠CBA. Поэтому
дуга АС = 2·26° = 52°.