Координаты середины отрезка ищутся как полусуммы соответствующих координат концов этого отрезка. Поэтому середина C_1 стороны AB имеет координаты (0;2), середина B_1 стороны AC - (1;0), середина A_1 стороны BC - (3;2). Будем искать уравнения медиан в виде y=kx+b (уравнение прямой с угловым коэффициентом). Подставляя в это уравнение координаты точек A и A_1. найдем уравнение медианы AA_1. Аналогично поступаем с медианами BB_1 и CC_1. В первом случае получаем систему уравнений относительно k и b 0= - 2k+b; 2=3k+b⇒k=2/5; b=4/5⇒ уравнение медианы AA_1 имеет вид y=2x/5+4/5 Аналогично получаем уравнения медианы BB_1: y=4x-4 и медианы CC_1: y= - x/2+2 (Если не правильно,не бейте..)
Решение задачи ДАНО: АВСDEFA1B1C1D1E1F1 - правильная шестиугольная призма ; АВ = АА1 = 1
НАЙТИ: p ( A ; CB1 )
1) точка А и отрезок СВ1 лежат в плоскости треугольника АВ1С.
Все боковые грани правильной шестиугольной призмы равны.
Значит, АВ1 = В1С => ∆ АВ1С - равнобедренный
Найдём все стороны ∆ АВ1С
2) Рассмотрим ∆ АВ1В ( угол АВВ = 90° ):
По теореме Пифагора:
АВ1² = АВ² + ВВ1²
АВ1² = 1² + 1² = 2
АВ1 = √2
АВ1 = В1С = √2
3) В основании правильной шестиугольной призмы лежит правильный шестиугольник. Все углы правильного шестиугольника равны 120°.
Рассмотрим ∆ АВС ( АВ = ВС ):
По теореме косинусов:
АС² = АВ² + ВС² - 2 × АВ × ВС × cos ABC
AC² = 1² + 1² - 2 × 1 × 1 × cos 120°
AC² = 2 - 2 × ( - 1/2 ) = 2 + 1 = 3
AC = √3
4) B1B перпендикулярен ВН
ВН перпендикулярен АС
Значит, по теореме о трёх перпендикулярах В1Н перпендикулярен АС
Высота в равнобедренном ∆ АВ1С является и медианой и биссектрисой =>
АН = НС = 1/2 × АС = 1/2 × √3 = √3/2
5) Рассмотрим ∆ В1СН ( угол В1НС = 90° ):
По теореме Пифагора:
В1С² = В1Н² + НС²
В1Н² = ( √2 )² - ( √3/2 )² = 2 - 3/4 = 5/4
В1Н = √5/2
Опустим из точки А перпендикуляр АМ на отрезок В1С. Соответственно, АМ = р ( А ; В1С )
6) Найдём площадь ∆ В1АС:
S b1ac = 1/2 × AC × B1H
С другой стороны, S b1ac = 1/2 × B1C × AM
Приравняем площади и получим:
1/2 × АС × В1Н = 1/2 × В1С × АМ
АС × В1Н = В1С × АМ