Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
если два угла равныв, то он равнобедренный( я не русская и не уверена как это нзываетса) тоесть Р=или 20+20+10 или 10+10+20.
проверим первый случай .
одна сторона лубого треугольника должна быть меншей чем сумма двух других , тоесть 20<10+20
10<20+20
20<10+20 Тоесть такой треугольник существует с периметром 50 см.
второй случай . ( аналагочно)
но єтот треугодльник не существует потому что
20<10+20 , но20=10+10 . треуголдьник с перисетром 40 см не существует
кароче периметр- 50 см.