Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Большая часть территории Скандинавского полуострова находится в умеренном поясе, а крайний север — в субарктическом поясе. Меридиональная протяжённость полуострова и особенности расположения Скандинавских гор, которые служат барьером по отношению к влажным воздушным массам, приходящим со стороны Атлантического океана делают климат полуострова разнообразным. На западе, благодаря интенсивной циклонической циркуляции и отепляющему влиянию Северо-Атлантического течения, климат морской с мягкой зимой (средняя температура января от —4 °С на севере до 2 °С на юге) , прохладным летом (в июле, соответственно, от 8 °С до 14 °С) , обильными и относительно равномерно распределёнными в течение года осадками (1000—3000 мм в год) . В верхнем поясе Скандинавских гор средняя температура января до —16 °С, июля от 6 °С до 8 °С; около 5000 км² здесь покрыто ледниковыми щитами, а также горно-долинными ледниками. В восточной части климат умеренный, переходный к континентальному; средняя температура января от —15 °С на севере до —3 °С на юге, июля от 10 °С на севере до 17 °С на юге; осадков 300—800 мм в год, но, вследствие малой испаряемости, увлажнение и здесь почти повсеместно достаточное или избыточное, что обусловило значительную заболоченность территории.
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5