Из точки окружности проведены диаметр и хорда . длина хорды равно 30 см, а ее проекция на диаметр меньше радиуса окружности на 7 см. найдите радиус окружности
Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см. Примем проекцию хорды на диаметр за х.
Радиус будет тогда х+7.
Высота делит треугольник на два,тоже прямоугольных. В прямоугольном треугольнике справедливы следующие соотношения: 1) h² = a₁· b₁; 2) b² = b₁ · c; 3) a² = a₁ · c, где b₁ и a₁ - проекции катетов b и a на гипотенузу с Применим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея. h²=x(x+14)
h²=30²-x²
x(x+14)=30²-x²
x²+14х=900 -x² 2x²+14х-900=0 x²+7х-450=0 Решаем уравнение через дискриминант. D = 1849 √D = 43 Уравнение имеет 2 корня.
Площадь произвольного четырёхугольника с диагоналями , и острым углом между ними (или их продолжениями), равна: площадь произвольного выпуклого четырёхугольника равна: , где , — длины диагоналей, a, b, c, d — длины сторон. : где p — полупериметр, а есть полусумма противоположных углов четырёхугольника. (какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна , то полусумма двух других углов будет и ). из этой формулы для вписанных 4-угольников следует формула брахмагупты. особые случаи[править | править исходный текст] если 4-угольник и вписан, и описан, то .если он описан, то площадь равна половине его периметра умноженная на радиус вписанной окружности | править исходный текст] в древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника неверную формулу — произведение полусумм его противоположных сторон a, b, c, d[1]: . для непрямоугольных четырехугольников эта формула даёт завышенное значение площади. можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. при неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.
Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см.
Примем проекцию хорды на диаметр за х.
Радиус будет тогда х+7.
Высота делит треугольник на два,тоже прямоугольных.
В прямоугольном треугольнике справедливы следующие соотношения:
1) h² = a₁· b₁;
2) b² = b₁ · c;
3) a² = a₁ · c,
где b₁ и a₁ - проекции катетов b и a на гипотенузу с
Применим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея.
h²=x(x+14)
h²=30²-x²
x(x+14)=30²-x²
x²+14х=900 -x²
2x²+14х-900=0
x²+7х-450=0
Решаем уравнение через дискриминант.
D = 1849
√D = 43
Уравнение имеет 2 корня.
x 1=18,
x 2= -25 ( не подходит).
Радиус окружности равен
18+7=25 см