Через точку a проведены касательная ab (b - точка касания) и секущая, пересекающая окружность в точках c и k так, что ac=4 см, ak=16 см. найдите длинну ab
Первый Сумма углов принадлежащих одной из боковых сторон трапеции равна всегда 180 град., а в равнобедренной трапеции углы принадлежащие основаниям трапеции - равны. Следовательно, можно сделать вывод, раз сумма двух углов равна 150 град, то это углы при основании трапеции и следовательно острый угол равен 150/2=75 град. Тупой угол такой трапеции равен 180-75=105 град. Второй Сумма углов любой трапеции = 360 град Сумма углов принадлежащих одной из боковых сторон трапеции равна всегда 180 град., а в равнобедренной трапеции углы принадлежащие основаниям трапеции - равны. Следовательно, можно сделать вывод, раз сумма двух углов равна 150 град, то это углы при основании трапеции. Следовательно сумма тупых углов при верхнем основании трапеции=360-150=210 град. А поскольку эти углы равны, то каждый из них равен 210/2=105 град
Центра́льной симме́три́ей относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через ZA, в то время как обозначение SA можно перепутать с осевой симметрией. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.
АВ в квадрате = АС х АК = 4 х 16 =16
АВ = 8