М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
roapoaop
roapoaop
17.08.2020 17:32 •  Геометрия

Ну прям по зарез нужна формулировки! : ) 1)докажите,что отрезки касательных к окружности,проведенных из одной точки,равны и составляют равные углы с прямой,проходящей через эту точку и центр окружности 2)сформулируйте т докажите теорему,обратную теореме о свойстве касательной. 3)объясните,как через данную точку окружности провести касательную к этой окружности

👇
Ответ:
Teacher991
Teacher991
17.08.2020
1. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Дано: ω (О; ОА), СА и СВ - касательные (А и В - точки касания).
Доказать: СА = СВ, ∠АСО = ∠ВСО.
Доказательство:
Проведем радиусы в точки касания. Они перпендикулярны касательным (по свойству касательной).
∠САО = ∠СВО = 90°,
ОА = ОВ как радиусы,
ОС - общая гипотенуза для треугольников САО и СВО, ⇒
ΔСАО = ΔСВО по катету и гипотенузе.
Следовательно, СА = СВ и ∠АСО = ∠ВСО.
Доказано.

2. Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.

Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.

3.  Соединяем данную точку А с центром окружности.
Проводим перпендикуляр к полученному радиусу, проходящий через данную точку. Для этого на луче ОА откладываем отрезок АВ = ОА.
Строим две окружности равного радиуса (произвольного, но больше половины отрезка ОВ) с центрами в точках О и В.
Через точки пересечения окружностей проводим прямую а. Это и есть прямая, перпендикулярная радиусу ОА.
Прямая а  - касательная к окружности.
4,6(3 оценок)
Открыть все ответы
Ответ:
COFFI228
COFFI228
17.08.2020

тебе нужно просто расставить буквы к данной функции.

1. с (применяется правило синуса. противоположный катет к гипотенузе)

2. а (правило косинуса. прилежащий катет к гипотенузе)

3. а (правило синуса)

4. с  (правило косинуса)

5. не возможно найти  (так как правило противолежащий катет к прилежащему катету, а у нас отношения такого не дано.)

6. в (правило котангенса. прилежащий катет к противолежащему катету )

7.в (правило тангенса. противолежащий катет к прилежащему катету)

8.не возможно найти (так как по правилу прилежащий катет к противолежащему катету, а нам отношение не дано)

вот и все. не забудь построить прямоугольный треугольник и правильно указать буквы.

4,6(24 оценок)
Ответ:

Объяснение:

Проведемо промінь BF до його перетину з променем AD. Нехай M - точка їх перетину. Тоді ∠BCF = ∠MDF (як внутрішні різносторонні при паралельних прямих BC і AM та січній CD), ∠CFB = ∠DFM (як вертикальні), CF = FD (за умовою). Отже, ∆ CFB = ∆DFM (за стороною і двома прилеглими кутами), звідки BF = FM, BC = DM (як відповідні сторони рівних трикутників).

2) Оскільки BF = FM, то EF - середня лінія трикутника ABM. Тоді, за властивістю середньої лінії трикутника, EF || AM, отже, EF || AD. А оскільки AD || BC, то EF || BC.

3) Окрім того, EF = AM = =

4,6(46 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ