1. Так как треугольник ABC равнобедренный, BM - высота, биссектриса и медиана. Значит, угол CBM = углу ABM = 20 град. Тогда угол ABC = угол CBM + угол ABM = 40 град.
2. Так как треугольник ABC равнобедренный, угол A = углу C (как углы при основании). Пусть угол A равен x. Тогда и угол C = x. Сумма углов в любом треугольнике равна 180 град. Составим сумму углов для треугольника ABC:
Угол ABC + угол A + угол C = 40 град. + x + x = 180 град
40 град. + 2x = 180 град
2x = 180 - 40
2x = 140
x = 70 град.
Значит, угол A = углу C = 70 град.
ответ: угол A = 70 град, угол C = 70 град, угол ABC = 40 град.
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Объяснение:
Равнобед. треугольник ABC
Угол CBM = 20 град
AB = BC
BM - высота
Найти: углы треугольника ABC
1. Так как треугольник ABC равнобедренный, BM - высота, биссектриса и медиана. Значит, угол CBM = углу ABM = 20 град. Тогда угол ABC = угол CBM + угол ABM = 40 град.
2. Так как треугольник ABC равнобедренный, угол A = углу C (как углы при основании). Пусть угол A равен x. Тогда и угол C = x. Сумма углов в любом треугольнике равна 180 град. Составим сумму углов для треугольника ABC:
Угол ABC + угол A + угол C = 40 град. + x + x = 180 град
40 град. + 2x = 180 град
2x = 180 - 40
2x = 140
x = 70 град.
Значит, угол A = углу C = 70 град.
ответ: угол A = 70 град, угол C = 70 град, угол ABC = 40 град.