Периметр Р=сумма всех сторон
1) Обозначим меньшую сторону за Х, тогда вторая сторона У=Х+3 Р=х+у+х+у или Р=2х+2у заменим у на х+3 и получим Р=2х+2(х+3), решаем несложное уравнение 24=4х+6 4х=24-6 4х=18 х=18:4 х=4,5 см тогда вторая сторона 4,5+3=7,5см ответ: 4,5 см и 7,5 см
2) Обозначим большую сторону за Х, тогда вторая сторона У=Х-2 Р=х+у+х+у или Р=2х+2у заменим у на х-2 и получим Р=2х+2(х-2) 24=4х-4 4х=24+4 4х=28 х=28:4 х=7см вторая сторона 7-2=5 см ответ: 5 см и 7 см
3) Обозначим меньшую сторону за Х, тогда вторая сторона У=Х*2 Р=х+у+х+у или Р=2х+2у заменим у на х*2 и получим Р=2х+2(2х), решаем уравнение 24=6х х=24:6 х=4 см тогда вторая сторона 4*2=8см ответ: 4 см и 8 см
Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.