V = 96 см².
Объяснение:
Основание правильной четырехугольной пирамиды - квадрат. Так как углом между наклонной (высота пирамиды) и плоскостью (боковая грань пирамиды) являетс угол между этой наклонной и ее проекцией на плоскость, высота боковой грани (апофема) образует с высотой пирамиды угол 30° (дано). В правильной пирамиде ее вершина проецируется в центр основания (пересечение диагоналей квадрата), расстояние от которого до боковых сторон равно половине стороны квадрата.
Рассмотрим прямоугольный треугольник SOH, образованный апофемой SH (гипотенуза), высотой пирамиды (SO) и половиной стороны основания ОН (катеты). <ОСН=30° (дано).
По Пифагору SO² = SH² - OH².
Так как катет, лежащий против угла 30° равен половине гипотенузы, то SH = 2*OH и тогда SО² = 3*ОН² = 36 см => ОН = 2√3 см.
Сторона основания равна 2*ОН = 4√3, площадь основания равна
So = (4√3)² = 48 см². Тогда
V = (1/3)*So*H = (1/3)*48*6 = 96 см²
Найти периметр треугольника.
2) Сторона ромба равна 25 см, а его высота- 24 см.
Найти диагонали ромба.
1). НС=√(30²-24²)=18см. (по Пифагору).
АВ²-ВН²=АН² (по Пифагору). Или
24²=(18+х)²-х². => х=7см.
АВ=ВС=18+7=25см.
Периметр равен 25+25+30=80см.
2). Площадь ромба равна Sabcd= ВН*AD = 24*25=600см².
АН=√(25²-24²)=7см. (по Пифагору).
НD=25-7=18см.
BD= √(24²+18²)=30см. (по Пифагору).
Sabcd=(1/2)*D*d=600см² (найдена ранее) =>
AC=1200/30=40см.
ответ: диагонали ромба равны 40см и 30см.