Объяснение:Обозначим через x длину второй стороны данного прямоугольного четырехугольника.
В формулировке условия к данному заданию сообщается, что длина первой стороны этого
В формулировке условия к данному заданию сообщается, что равна 15 см, а его диагональ составляет 17 см, следовательно, используя теорему Пифагора, можем составить следующее уравнение:
15^2 + x^2 = 17^2,
решая которое, получаем:
x^2 = 17^2 - 15^2;
x^2 = (17 - 15) * (17 + 15);
x^2 = 2 * 32;
x^2 = 64;
x = √64 = 8 см.
Зная длины сторон, находим площадь прямоугольника:
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
120 см^2.
Объяснение:Обозначим через x длину второй стороны данного прямоугольного четырехугольника.
В формулировке условия к данному заданию сообщается, что длина первой стороны этого
В формулировке условия к данному заданию сообщается, что равна 15 см, а его диагональ составляет 17 см, следовательно, используя теорему Пифагора, можем составить следующее уравнение:
15^2 + x^2 = 17^2,
решая которое, получаем:
x^2 = 17^2 - 15^2;
x^2 = (17 - 15) * (17 + 15);
x^2 = 2 * 32;
x^2 = 64;
x = √64 = 8 см.
Зная длины сторон, находим площадь прямоугольника:
15 * 8 = 120 см^2.
ответ: 120 см^2.