1)Периметр ромба равен 4*сторона
сторона= 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла =площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)=
=119\169
По одной из основных формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см
3)
Боковые стороны: (36-10)/2=13
Высота h=корень(169-25)=12
tga=5/12 sina=5/13 cosa=12/13.
4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
1) Угол при основании равен 42°.
Тогда другой угол при основании равен тоже 42°.
По теореме о сумме углов треугольника угол при вершине равен:
180° - 42° - 42° = 96°.
Угол при вершине равен 42°.
Тогда сумма углов при основании равна:
180° - 42° - 138°, а сами углы равны 138°:2 = 69°.
ответ: 42°, 42°, 96°или 42°, 69°, 69°.
Во втором случае только угол при вершине может быть равен 94°, т.к. тогда сумме двух углов уже будет превосходить 180°:
94° + 94° = 188° > 180°.
Угол при вершине равен 94°.
Тогда сумме углов при основании равна:
180° - 94° = 86°, а каждый угол при основании равен 86°:2 = 43°.
ответ: 94°, 43°, 43°.