Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
1), 2), 6), 8).
Объяснение:
ΔАВС = ΔDEB,
АВ = DE, АС = DB, значит ВС = ВЕ, т.е. ΔВЕС равнобедренный
В равных треугольниках против равных сторон лежат равные углы, значит
∠DBE = ∠ACB, тогда
ΔВЕС равнобедренный с основанием ВС.
Итак, ВЕ = ЕС = ВС, т.е. ΔВЕС равносторонний.
∠АВЕ = ∠АВС - ∠ЕВС
∠DEC = ∠DEB - ∠BEC
∠АВС = ∠DEB из равенства треугольников,
∠EBC = ∠BEC, как углы равностороннего треугольника, значит
∠АВЕ = ∠DEC.
АЕ = АС - ЕС
CD = DB - BC
AC = DB по условию,
ЕС = ВС, так как ΔВЕС равносторонний, значит
АЕ = CD.
1) Треугольник BCE равнобедренный - верно.
2) Треугольник BCE равносторонний - верно.
3) ∠ABC = 90° - нельзя утверждать.
4) Треугольник ECD равнобедренный - нельзя утверждать.
5) AE = BC - нельзя утверждать.
6) AE = CD - верно.
7) ∠ABE = ∠CDE - нельзя утверждать.
8) ∠ABE = ∠CED - верно.