В треугольнике ABC провели DE | CА. Известно, что: De AB, Еe BC, AB = 20 см, DB = 5 см, CA = 15 см. Вычисли DE. Сначала докажи подобие треугольников. (В каждое окошечко пиши одну большую латинскую букву.)
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45?Значит, острый угол параллелограмма равен 45?, а тупой 135?ответ: два острых угла по 45?, и два тупых угла по 135?.