Объяснение:
Задание 5
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
НЕВЕРНЫЙ ОТВЕТ -3
ЗАДАНИЕ 6
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
h=√(a*b) , 2,5=√(1,5*b) , 2,5²=1,5*b , (5/2)² =3/2*b , b=25/6 (cм)
ЗАДАНИЕ 7
Найдем гипотенузу a+b=800+100=900(мм).
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
с=√(а*(а+b) ,с=√(800*900)=√(2*400*900)=20*30√2=600√2(мм)
1)Площадь=60. Периметр = 34
2)S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4)
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теперь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5)центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы, поэтому радиус равен двум
радиус вписанной в шестиугольник окружности r=(a*корень из 3)/2 отсюда выражаем сторону a=2r/(корень из 3)
подставим занчение радиуса a=4/(корень из 3)
сделаем построение по условию
точки А,M,N - лежат в одной плоскости (АМN)
соединим М и А , N и А - это две стороны сечения
плоскость (АМN) пересекает параллельные грани (ABB1A1) и (DCC1D1) - линии пересечения граней тоже параллельны , проводим через т.N линию NK || AM
плоскость (АМN) пересекает параллельные грани (AA1D1D) и (BB1C1C) - линии пересечения граней тоже параллельны , проводим через т.M линию MK || AN
построили сечение АМKN ,проходящее через заданные точ