М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dawdawad
dawdawad
16.03.2020 03:45 •  Геометрия

Кто сможет нужно 1 высота основания правильной треугольной пирамиды равна 3 см, а апофема равна 4 см. найдите площадь полной поверхности пирамиды.

👇
Ответ:
Oooooooooooooool
Oooooooooooooool
16.03.2020

Т.к. пирамида правильная, значит в основании лежит равносторонний треугольник АВС, в котором высота является и медианой и биссектрисой. Точкой Р обозначим точку, в которую опущена высота ВР этого треугольника. Высота делит АВС на два равных прямоугольных треугольника АВР и ВРС.

Пусть АВ=х - сторона основания пирамиды, тогда РС=х/2.

Тогда по теореме Пифагора х^2=(x/2)^2+3^2

или x^2=1/4*x^2+9. Отсюда находим х=корень из 12.

Тогда площадь равностороннего треугольника Sabc=1/2*sqrt{12}*sqrt{12}[/tex*sin60=3[tex]sqrt{3}

Периметр треугольника Р=3*sqrt{12}

Тогда площадь полной поверхности пирамиды есть S=1/2PL+Sabc, где L - апофема

S=1/2*3*sqrt{12}*4+3*sqrt{3}=15sqrt{3}


Кто сможет нужно 1 высота основания правильной треугольной пирамиды равна 3 см, а апофема равна 4 см
4,6(82 оценок)
Открыть все ответы
Ответ:
Тимофейзъ
Тимофейзъ
16.03.2020
Пусть a,\,b,\,c,\,m_a,\,m_b,\, m_c - длины сторон и медиан треугольника ABC, S_{ABC}=S.Воспользовавшись формулу S=pr и то, что S_{GBC}=S_{GAB}=S_{GAC}= \frac{S}{3}, получаем, что нужно доказать неравенство.
    Подставив вместо р и r, получим
\frac{3a+2(m_b+m_c)}{2S} + \frac{3b+2(m_a+m_b)}{2S} + \frac{3c+2(m_a+m_b)}{2S} \geq \frac{3(a+b+c)}{2S} + \frac{36}{a+b+c}
Упрощать здесь не буду, но напишу упрощенный
\frac{m_a+m_b+m_c}{S} \geq \frac{6S}{a+b+c}
Или имеем такое равенство: \frac{m_a}{3} + \frac{m_b}{3}+ \frac{m_c}{3} \geq \frac{6S}{a+b+c}

Пусть d_a,\, d_b,\, d_c-расстояния от точки G к сторонам a, b, c треугольника АВС. Очевидно, что d_a \leq \frac{m_a}{3} ,\,d_b \leq \frac{m_b}{3} ,\, d_c= \frac{m_c}{3} Также имеемd_a= \frac{2S_{GBC}}{a} = \frac{2S}{3a}. Аналогично, d_b= \frac{2S}{3b} ,\,\, d_c= \frac{2S}{3c}

Достаточно доказать неравентсво \frac{2S}{3a} + \frac{2S}{3b}+ \frac{2S}{3c} \geq \frac{6S}{a+b+c}, которое равносильна неравенству, что выражает отношение между средним арифметическим и средним гармоническим 3 положительных чисел:
        \frac{a+b+c}{3} \geq \frac{3}{ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} }
4,5(10 оценок)
Ответ:
ele133pan11tov
ele133pan11tov
16.03.2020

5.угол ВАЕ =60 град, значит угол АВЕ=30град.в прямоуг треуг против угола 30 градусов лежит сторона равная половине гипотенузы, значит половине боковой стороны с длиной 4 , то есть АЕ=2, СООТВЕТСТВЕННО ЧТОБ ПОЛУЧИЛСЯ ВЕРХ ТРАПЕЦИИ ,Надо из низа (12) вычесть два таких симметричных отрезка 12-2-2=8.

 

6. площадь трапеции равна произведению ее сред линии на высоту h,но также произведению среднего арифметического оснований на эту же высоту.Высоту сокращаем и приравниваем 11=((2х+4х+7х  это низ) +4х (это верх))/2 .....х=11/17, 4х(верх)=44/17 (сократишь сам),низ =2х+4х+7х=13х=13*11/17= ...сам дорешаешь.


1)сумма длин диагоналей ромба 14см. сторона ромба 5см. найти площадь. 2)биссектриса острого угла пар
1)сумма длин диагоналей ромба 14см. сторона ромба 5см. найти площадь. 2)биссектриса острого угла пар
4,7(30 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ