Объяснение:№1
а) АВ║А₁В₁ б) ВС║ А₁Д₁ в)СС₁ ∩ В₁С₁ г) АД и СС₁-скрещивающиеся д) Д₁С₁ и ВВ₁-скрещ-ся
е) А₁С ∩ ВД₁
№2 а) т.к. АВСД параллелограмм, то ДС║Ав, но АВ∈ (АВМ), значит по Признаку параллельности прямой и плоскости. (Если прямая,
не лежащая в плоскости, параллельна прямой, лежащей в этой
плоскости, то она параллельна данной плоскости.) ⇒ДС║пл (АВМ)
ч.т.д.
б) ВС и АМ не лежат в одной плоскости
Если одна из двух прямых (у нас АМ) лежит в некоторой плоскости (АВМ), а другая прямая (ВС) пересекает эту плоскость в точке (В), не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости). Ч.Т.Д.
№3В треугольнике АСЕ МР-средняя линия, в треугольнике ВСЕ NP-средняя линия,, в треугольнике АВЕ MN-средняя линия, ⇒ MP║FC, NP║BC, MN║ AB/
Но МР∪NP, AC∪BC, но если 2 пересекающиеся прямые одной плоскости соотв параллельны двум пересекающимся прямым другой плоскости, то такие пл-ти параллельны. чтд.
№4 1) провести ЕF 2) провести EQ 3)Из точки Q провести прямую║ЕF, обозначить точку пересечения К 4) Точку К соединить с F Cечение KFEQ
Боковая сторона равнобедренного треугольника равна 10 см, а его основание 12 см. Найдите его площадь.
Биссектриса угла А параллелограмма ABCD делит сторону ВС на отрезки ВК и КС, равные соответственно 8 см и 4 см. Найдите периметр параллелограмма.
В трапеции ABCD углы А и В прямые. Диагональ АС — биссектриса угла А и равна 6 см. Найдите площадь трапеции, если угол CDA равен 60°.
В окружности проведены две хорды АВ и CD, пересекающиеся в точке К, КС = 6 см, АК = 8 см, ВК + DK = 16 см. Найдите длины ВК и DK.
Квадрат со стороной 8 см описан около окружности. Найдите площадь прямоугольного треугольника с острым углом 30°, вписанного в данную окружность.