Написала на картинке.
1. Каждая сторона треугольника меньше суммы двух других сторон. Пользуясь этой теоремой, пишем неравенства для сторон шестиугольника.
2. Неравенство для второго вопроса -
PK+KL+LM+MN+NR+PR < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR.
3. Неравенство для третьего вопроса -
2*(PK+KL+LM+MN+NR+PR) < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR+(PK+KL+LM+MN+NR+PR).
4. На картинке.
5. Пользуемся ответами от 3 и 4 задания.Сумма периметров треугольников АВС и DEF равна 16 см (7 см+9 см). Я не знаю, там нужно писать единицы измерения или нет.
Вот такое неравенство в итоге получилось -
2*(PK+KL+LM+MN+NR+PR) < 16 см.
6. Логично, что поделить на 2.
Получаем, что -
2*(PK+KL+LM+MN+NR+PR) < 16 см
PK+KL+LM+MN+NR+PR < 8 см.
Это нам и нужно было доказать!
Сумма углов треугольника равна 180 градусов. Если углы треугольника относятся как 5 : 6 : 7, то это значит, что первый угол содержит 5 частей, второй - 6 таких же частей, а третий 7 таких же частей градусных мер угла.
Пусть одна часть угла равна х градусов, тогда первый угол треугольника равен 5х градусов, второй угол равен 6х градусов, а третий угол - 7х градусов. По условию задачи известно, что сумма углов треугольника равна (5х + 6х + 7х) градусов или 180°. Составим уравнение и решим его.
5х + 6х + 7х = 180;
18х = 180;
х = 180 : 18;
х = 10° - градусная мера одной части;
5х = 10° * 5 = 50° - первый угол;
6х = 10° * 6 = 60° - второй угол;
7х = 10° * 7 = 70° - третий угол.
Все углы треугольника острые, значит, этот треугольник будет остроугольным.
ответ. 50°, 60°, 70°
Объяснение:
Объяснение:
Радиус окружности, описанной около треугольника, можно найти по формуле:
R = abc / 4S, где R - радиус описанной окружности, a, b и c - стороны треугольника, S - площадь треугольника.
Площадь произвольного треугольника, у которого известны все три стороны, можно найти по формуле Герона:
S = √(p(p - a)(p - b)(p - c)), где р - полупериметр треугольника.
р = (a + b + c) / 2;
Так как у нас известно что вершины это середины сторон, тогда стороны большого треугольника 20, 26, 34 см соответственно.
р = (20 + 26+ 34) / 2 = 40(см).
S = √(40(40- 34)(40- 26)(40- 20)) = √(40*6*14*20) = √67200 = 40√42 (см квадратных).
Подставим известные значения в формулу и найдем радиус описанной окружности:
R = 20*26*34/ 4*40√42= 221/ 2√42 = 221√42 / 84 (см).
ответ: R = 221√42 / 84 см.