В треугольнике ABC, ab=12см, bc=18 см. Угол B=70°, а в треугольнике mnk, mn=8см Nk=9см, угол N=70°. Найдите сторону AC и угол c треугольника abc, или mk =7 см. Угол K =60°
Там можно решать по-разному. Если знаем формулу - воспользуемся, если нет- сейчас выведем. Есть и другие решения.. Итак , смотри рисунок. из закрашенный прямоугольных треугольников - 1) x²+h²=a² 2) (c-x)²+h²=b² => c²-2cx+x²+h²=b² подставляем из (1) c²-2cx+a²=b² x=(c²+a²-b²)/2c
из желтого треугольника cosα=x/a cosα=(a²+c²-b²)/(2ac)
в общем виде - косинус угла равен сумме квадратов прилежащих минус квадрат противоположной стороны и все это деленное на удвоенное произведение прилежащих. теперь просто подставляем
Высота делит основание на отрезки 1,4 и 3,4 => основание b равно 4,8 см Высота, проведенная из вершины равнобедренной трапеции, равна второй высоте, проведенной из другой вершины трапеции и отрезки, на которые они разбивают сторону b тоже равны. => что 3,4 - 1,4 = 2 см основание a Высота H проведена по прямым углом. 135-90 = 45 градусов угол при стороне прямоугольника. В треугольнике (прямоугольном) образованном высотой известны теперь два угла, посчитаем третий - 180-90-45 = 45 => что треугольник равнобедренный, а высота равна 1,4 По формуле площадь трапеции равна 2+4,8/2 * 1,4 = 4,76 см²
Если знаем формулу - воспользуемся, если нет- сейчас выведем. Есть и другие решения..
Итак , смотри рисунок.
из закрашенный прямоугольных треугольников -
1) x²+h²=a²
2) (c-x)²+h²=b² => c²-2cx+x²+h²=b² подставляем из (1)
c²-2cx+a²=b²
x=(c²+a²-b²)/2c
из желтого треугольника cosα=x/a
cosα=(a²+c²-b²)/(2ac)
в общем виде - косинус угла равен сумме квадратов прилежащих минус квадрат противоположной стороны и все это деленное на удвоенное произведение прилежащих.
теперь просто подставляем
cosα=(7²+10²-9²)/(2*7*10)=17/35
cosβ=(9²+10²-7²)/(2*9*10)=11/15
cosΔ=(7²+9²-10²)/(2*7*9)=5/21
отсюда пишем углы через арккосинус