Объяснение:
Дано: ABCD-равнобедренная трапеция.
ВЕ и СF-высоты.
(а) Рассмотрим ΔАВЕ и ΔDCF.
∠А=∠Д и АВ=СД т. к. трапеция равнобедренная, ∠АЕВ=∠DFC=90°, а ∠А=∠Д поэтому ∠АВЕ=∠FCD ⇒ ΔАВЕ=ΔDCF.
(б) ∠А=∠Д, ∠Е=∠F, ∠В=∠С.
(с) Вид может быть разным, смотря как ВЫ начертите трапецию. Если у вас трапеция будет длиноватая, то это прямоугольник, если же получится так, что ЕВ=ВС=FC=EF, это квадрат.
(д) У нас ∠АВЕ=∠FCD, ВЕ и СF-высоты⇒∠В=∠Е=∠С=∠F=90°, т. е. ∠В=∠С, поэтому ∠АВС=∠ДСВ.
(е) У равнобокой трапеции есть свойство, это свойство и будет ВЫВОДОМ.
Вывод:
Углы при каждом основании равнобедренной трапеции равны.
ответ: AB и CD – 8 (ед. длины); BC и AD – 12 (ед. длины)
Объяснение:
ND=CD/2 Примем ND=a. Тогда CD=2a, AB=CD=2a.
ВС||AD, BN – секущая => ∠СВN=∠BNA – накрестлежащие при пересечении параллельных прямых секущей. Но ∠СВN=∠АВN как половина угла АВС ( BN – биссектриса) =>
∠ANB=∠АВN.
В треугольнике АВN углы при основании BN равны. ∆ АВN- равнобедренный. => AN=AB=2a =>
AD=AN+ND=2a+a=3a. BC=AD=3a
P(ABCD)=AB+CD+BC+AD=2•(2a+3a)=10a
10a=40
a=4
AB=CD=2•4=8 (ед. длины)
BC=AD=3•4=12 (ед. длины)