Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Сделаем рисунок.
Треугольники ВМК, АКТ, МСН и НDT - равнобедренные прямоугольные.
ОА=АС:2=15 см
Пусть ВК=х
Тогда АК=АВ-х
По известному свойству гипотенузы равнобедренного прямоугольного треугольника
АВ=15√2
АК=15√2 -х
КМ=х√2
КТ=(15√2 -х )*√2=30-х√2
По условию КТ-КМ=6 см
30-х√2 -х√2=6
24=2х√2
х=24:2√2=12:√2
Умножим числитель и знаменатель на √2, чтобы избавиться от дроби:
х=12:√2=(12*√2):√2*√2х=6√2
КМ=6√2*√2=12 см
КТ=30-х√2=30-12=18 см
КТ-КМ=18-12=6 см