М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

найдите все углы образованные при пересечении двух параллельных прямых а и б секущей с если один из углов 30° меньше другого

👇
Ответ:
MrLux123
MrLux123
07.01.2023

При пересечении параллельных прямых секущей образуется 8 углов двух величин:

соответственные углы

∠1 = ∠5

∠3 = ∠7,

а так как ∠1 = ∠3 как вертикальные, то

∠1 = ∠5 = ∠3 = ∠7 = х

и соответственные углы

∠2 = ∠6

∠4 = ∠8,

а так как ∠2 = ∠4, как вертикальные, то

∠2 = ∠6 = ∠4 = ∠8 = у

Сумма односторонних углов равна 180°, например

∠3 + ∠6 = 180°

Т. е. х + у = 180°.

Углы, о которых идет речь в задаче, не равны. Пусть х - меньший из них, тогда у = х + 30°.

x + x + 30° = 180°

2x = 150°

x = 75°

∠1 = ∠5 = ∠3 = ∠7 = 75°

у = 180° - 75° = 105°

∠2 = ∠6 = ∠4 = ∠8= 105°

4,5(44 оценок)
Открыть все ответы
Ответ:
chelbaeva77
chelbaeva77
07.01.2023
Task/28768087

Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.

Решение
Пусть a , b  и c  катеты и гипотенуза треугольника соответственно.
2R₁ =d₁=a ; 2R₂ =d₂=b ; 2R₃=d₃ = c    ⇒  R₁ =a/2 ; R₂ =b/2; R₃= c/2 . 
Площадь поверхности  шара вычисляется по формуле  S =4πR² , где R - радиус шара.
Можем  написать 
S₁=4πR₁²=4π(a/2)² =πa² ;
S₂ =4πR₂²=4π(b/2)² =πb² ; 
Площадь поверхности наибольшего шара:
S₃ =4πR₃²=4π(c/2)² =πc²  = π(a² +b²) =πa²+πb² =S₁+S₂.
* * * c²  =a² +b²  по теореме Пифагора * * *

ответ :  S₁+S₂.
4,7(41 оценок)
Ответ:
7Селестина
7Селестина
07.01.2023
Task/28765605

Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.

Решение
Пусть a , b  и c  катеты и гипотенуза треугольника соответственно.
2R₁ =a ; 2R₂ =b ; 2R₃= c  ⇒  R₁ =a/2 ; R₂ =b/2; R₃= c/2 . 
Площадь поверхности  шара вычисляется по формуле  S =4πR² , где
 R - радиус шара.
Можем  написать 
S₁=4πR₁²=4π(a/2)² =πa² ;
S₂ =4πR₂²=4π(b/2)² =πb² ; 
Площадь поверхности наибольшего шара:
S₃ =4πR₃²=4π(c/2)² =πc²  = π(a² +b²) =πa²+πb² =S₁+S₂.
* * * c²  =a² +b²  по теореме Пифагора * * *

ответ :  S₁+S₂.
4,8(4 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ