Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение Пусть a , b и c катеты и гипотенуза треугольника соответственно. 2R₁ =d₁=a ; 2R₂ =d₂=b ; 2R₃=d₃ = c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 . Площадь поверхности шара вычисляется по формуле S =4πR² , где R - радиус шара. Можем написать S₁=4πR₁²=4π(a/2)² =πa² ; S₂ =4πR₂²=4π(b/2)² =πb² ; Площадь поверхности наибольшего шара: S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂. * * * c² =a² +b² по теореме Пифагора * * *
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение Пусть a , b и c катеты и гипотенуза треугольника соответственно. 2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 . Площадь поверхности шара вычисляется по формуле S =4πR² , где R - радиус шара. Можем написать S₁=4πR₁²=4π(a/2)² =πa² ; S₂ =4πR₂²=4π(b/2)² =πb² ; Площадь поверхности наибольшего шара: S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂. * * * c² =a² +b² по теореме Пифагора * * *
При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны. Пусть х - меньший из них, тогда у = х + 30°.
x + x + 30° = 180°
2x = 150°
x = 75°
∠1 = ∠5 = ∠3 = ∠7 = 75°
у = 180° - 75° = 105°
∠2 = ∠6 = ∠4 = ∠8= 105°