Если соединить середины двух сторон, то получится средняя линия треугольника, равная половине третьей стороны. Точно так же и с остальными двумя соединениями. Таким образом, получается треугольник, составленный из средних линий данного треугольника. Он подобен данному треугольнику с коэффициентом подобия 1/2, то есть каждая его сторона вдвое меньше соответствующей стороны исходного треугольника. Значит, если в исходном треугольнике две стороны были равны между собой, то и в новом треугольнике две соответствующие стороны будут равны друг другу.
Треугольники МВК и АВС подобны по двум углам (МК и АС перпендикулярны ВД, значит угол М=углу А и угол К равен углу С), следовательно
МВ:АВ=ВК:ВС
7:АВ=9:27
АВ=27*7:9=21(см)
Треугольники МВК и АВС подобны с коэффициентом подобия k=ВК/ВС=9/27=1/3, следовательно их площади относятся друг к другу с коэффициентом подобия k^2=(1/3)^2=1/9