Проведем высоты ВН и СМ на сторону АD. Фигура ВСМН - прямоугольник, а значит все его углы равны 90 градусов.
Треугольники АВМ и СМD - прямоугольные. Сумма углов треугольника равна 180 градусов.
Треугольник АВМ:
Угол АВН = 180 - (угол А + 90) = 180 - (36 + 90) = 180 - 126 = 54 градуса.
Угол В = 54 + 90 = 144 градуса
Треугольник СМD:
Угол DСМ = угол С - 90 = 117 - 90 = 27 градусов
Отсюда угол D = 180 - (угол DСМ + 90) = 180 - (27 + 90) = 180 - 117 = 63 градуса.
угол В = 144 градуса, угол D = 63 градуса
Смотри прикреплённый рисунок.
а) Известно, что если стороны прямоугольного треугольника равны по 1, то по теореме Пифагора гипотенуза равна √(1² + 1²) = √2. Поэтому откладываем из одной точки по горизонтали и вертикали отрезки, равные по 1 и соединяем их концы. получаем отрезок, равный √2.
б) Известно, что tg 60° = √3. Поэтому откладываем отрезок, равный 1, по горизонтали и восстанавливаем перпендикуляр вверх. От свободной точки горизонтального отрезка раствором циркуля, равным 2 единицы делаем на перпендикуляре засечку. Длина вертикального отрезка равна √3.