MN и АВ
Объяснение:
1) Найдём угол <МNC
<MNC = 180° - <MNB = 180° - 115° = 65°
2) Рассмотрим треугольник МСN
Он равнобедренный (MC = CN), а значит, согласно его свойствам, углы при основании равны, то есть
<CMN = <MNC = 65°
3) Если при пересечении двух прямых секущей выполняется хотя бы одно из условий:
- внутренние разносторонние углы равны;
- сумма внутренних односторонних углов равна 180°;
- соответствующие углы равны;
• Мы видим две прямые MN и АВ, и их секущую АС. При этих прямых и этой секущей соответсвующие углы (<CMN и <САВ) равны, а значит сами прямые параллельны •
Сделай мой ответ лучшим.
Объяснение:
10) Я плохо вижу картинку, но, скоре всего, там есть накрест лежащие углы, которые равны.
11) Заметим вертикальные углы. И значит треугольник АВЕ равен треугольнику ЕDC по 1 признаку рав-ва треугольников. Следовательно угол ECD равен углу АВЕ. Они накрест лежащие. И по теореме о накрести лежащих углах AB параллельна CD/
12) Так как треугольник равнобедренный, то углы при основании равны. Угол PNC равен углу PCN и они оба равны углу CNO (за О я взял точку на нижней прямой). И так как PCN раен CNO и они накрест лежащие, то прямые параллельны.
Сначала найдём координаты середин диагоналей и проверим, пересекаются ли они в одной точке.
Диагональ АС:
х=(3+2)/2=2,5
у=(-2+1)/2=-0,5
Точка (2,5; -0,5)
Диагональ BD:
x=(4+1)/2=2,5
y=(0-1)/2=-0,5
Точка (2,5; -0,5)
Координаты середин двух диагоналей совпадают. ABCD – параллелограмм. Теперь нужно доказать, что он ещё и прямоугольник. Для этого диагонали должны быть равны. Проверим и докажем это.
|АС|=(2-3)²+(1+2)²=1+9=10
|BD|=(1-4)²+(-1-0)²=9+1=10
Диагонали равны. ABCD – прямоугольник, что и требовалось доказать.
угол N = углу А - как внутренние односторонние
Угол N = 115°
Угол А = 65°
115°+65° = 180°
Следовательно, прямые параллельны по третьей теореме параллельности прямых (Если сумма внутренние односторонних углов равна 180° градусов, то прямые параллельны)