Пирамида SABCD пересечена плоскостью KLNM, параллельной основанию.
1. Каково взаимное расположение прямых (пересекаются, скрещиваются, параллельны):
а) AS и CD? ответ: скрещиваются, т.к. CD∈( ADC) , AS∩( ADC) =A , A∉CD
б) AB и KL? ответ: параллельны , т.к. (KLN)||(АВС).
в) CD и LM? ответ: скрещиваются, т.к.CD∈(CDM) , а LM пересекает эту плоскость в точке М , не лежащей на CD.
2. Как расположены плоскости:
а) ASB и DSC? ответ: пересекаются ,т.к. имеют общую точку
б) ABD и ASD? ответ: пересекаются ,т.к имеют общую прямую.
в основании лежит квадрат, и есть только 2 неизвесных, пусть a - сторона основания, b - боковое ребро (высота). Тогда
2*a^2 + b^2 = 9^2;
2*a^2 + 4*a*b = 144; a^2 + 2*a*b = 72; вычитаем это из первого уранения, получаем
a^2 - 2*a*b + b^2 = 9; a - b = 3 (или -3, посмотрим потом) :))
b = a - 3; a^2 + 2*a*(a - 3) = 72; a^2 - 2*a - 24 = 0; a = 6; b = 3.
Если b - a = 3; то b = a + 3; a^2 + 2*a*(a + 3) = 72; a^2 + 2*a - 24 = 0; a = 4; b = 7;
Прямой проверкой легко установить, что оба решения подходят.