Правильная четырёхугольная призма.
АВ = 4 см.
AC1 = 4√3 см.
Найти:V - ?
Решение:"Правильный многоугольник - многоугольник, у которого все углы и стороны равны".
Так как данная призма - правильная, четырёхугольная => основание этой призмы - квадрат.
"Квадрат - геометрическая фигура, у которой все стороны равны".
=> АВ = AD = CD = CB = 4 см.
АС - диагональ квадрата.
d = a√2, где d - диагональ квадрата АС; а - сторона квадрата.
=> АС = 4√2 см.
СС1 = h призмы.
Найдём СС1 (h), по теореме Пифагора: (с = √(a² + b²), где с - гипотенуза; а, b - катеты)
a = √(c² - b²) = √((4√3)² - (4√2)²) = 4 см.
Итак, СС1 = h = 4 см.
V = S основания * h
Основание - квадрат.
S квадрата = а² = 4² = 16 см.
V = 16 * 4 = 64 см³
ответ: 64 см³
корень из 169 = 13 см
расстояние равно от вершины до основания 13см
2) угол dod1 = 45 градусов, . в треугльника dod1 угол d = 90 градусов, => треугольник dod1 = прямоугольный => угол dod1 = углу od1d => od = dd1 = h. od = 1/2 * db = 1/2* корень из( 144 + 256) = 1/2 * 20 = 10. найдем площадь сечения через формулу 1/2 * od1 * ac. ac = 20, od1 = корень из(100+100) = 10√2 => s acd1 = 1/2 * 20 * 10√2 = 100√
3) проекцию катета отметим как х
проекцию гипотинузы как y
решаем:
х=10*cos60град.=5 дм.
ад=√(100-25)=√75
ав=√(100+100)=√200
y=√(200-75)=√125=15 дм.
ответ:
проекция катета равна 5дм;
проекция гипотенузы равна 15дм.